Electronic and transport properties of topological material GdxSb2-xTe3

Firoza Kabir, Xiaxin Ding, M. MOfazzel Hosen, Narayan Poudel, Gyanendra Dhakal, Arjun Pathak, Madhab Neupane, Krzysztof Gofryk

July 2019

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Electronic and transport properties of topological material GdxSb2-xTe3

Firoza Kabir, Xiaxin Ding, M. MOfazzel Hosen, Narayan Poudel, Gyanendra Dhakal, Arjun Pathak, Madhab Neupane, Krzysztof Gofryk

July 2019

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Firoza Kabir^{1,2}, Xiaxin Ding¹, M. Mofazzel Hosen², Narayan Poudel¹, Gyanendra Dhakal², Arjun Pathak³ Madhab Neupane², Krzysztof Gofryk¹

¹Idaho National Laboratory, ²University of Central Florida, ³AMES laboratory

Motivation Transport and Magnetization properties of Gd_xSb_{2-x}Te₃ Gd doped TI ($Gd_xSb_{2-x}Te_3$): Topological Insulator (TI): (a) * Trigonal, space group: R3m [166] ❖ Bulk band gap like an ordinary insulator - Sb₂Te₃ ❖ Parent Sb₂Te₃ is a strong TI. but have protected conducting states on their Gd_xSb_{2-x}Te > Metallic ❖ Energy band gap ~0.3 eV edge or surface. 1000 > Relatively conductivity. * Crystal synthesis by flux method. > Due to spin-momentum locking, spin low 800 ➤ Anomaly at polarized electrons can move through Characterized by XRD and EDS. MR~3.5% 2.3 K?? surface. - 600 \triangleright No ➤ Band inversion as a result of strong spin saturation orbit coupling. up to 9T. 0.5 200 Hall resistivity and carrier concentration VB MRS BULLETIN, 39, OCTOBER 2014 PPMS (c) $\mu_I^{exp} = 0.060 \, \mu_B$ 0.020 - $\mu_J^{the}=2~\mu_B$ Direct experimental ✓ Tuning Fermi energy by doping. Hall coeffiicient Positive carrier density technique based on ✓ Studies of electronic properties of Determine 0.015 -(ordinary) $\chi_0 = -1.90$ Gd content. 5 2K 10 K 25 K the photoelectric this material. Hall C=0.06635 > Good effect. effect. ✓ One of the best thermoelectric $\theta = -1.19 \text{ K}$ 0.010 agreement Holes material. $E_{kin} = h\vartheta - \Phi - |E_B|$ with EDS dominant. ✓ Archetypical TI (Sb₂Te₃) (1% Gd). μ_{eff}^{exp} =7.28 $P_{||} = \hbar k_{||} = 2mE_{in} . \sin\Theta$ ARPES 0.005 Fermi surface and Dispersion map of Gd_xSb_{2-x}Te₃ T [K] 0.0 -0.5 Heat capacity measurement $C_P/T = \gamma + \beta T^2 + \delta T^4,$ Dulong Petit limit Conclusion: 3Rn~125 Jmole⁻¹K⁻¹ -0.5 0.0 ❖ Successfully synthesized Gd_xSb_{2-x}Te₃ γ =3.5 mJ mole⁻¹K⁻² 80 > For parent Significant influence of Gd on Sb₂Te3, electronic properties. $\gamma = 0.7 \pm 0.7 \text{ mJ}$ -1.0 -* Magnetism: excellent probe of small $mole^{-1}K^{-2}$ ⊕₀=204.41 K -0.5 Gd concentration in Gd_xSb_{2-x}Te_{3.} 0 meV 0 2 4 6 8 10 12 14 150 Momentum (1/Å) Kx (1/A) To be continued.... Idaho National Laboratory